Pharmacotherapies for Psychological Trauma

Jon Bisson

School of Medicine

Cardiff University

Neurobiology of PTSD

 PTSD represents a failure of medial prefrontal/anterior cingulate networks to regulate amygdala activity resulting in hyperreactivity to threat

Hypothalamic- Pituitary-Adrenal Axis

- Enhanced negative feedback
- Low cortisol levels
 - Disinhib'n traumatic memory retrieval
 - Failure to contain sympathetic response
- CRF increases locus ceruleus firing and noradrenaline release
- Adrenergic surge consolidates traumatic memories

Strategies to Reduce Noradrenergic Overactivity

- Direct
 - Alpha 2 adrenergic receptor agonism
 - e.g., clonidine
 - Postsynaptic beta adrenergic blocking
 - e.g., propranolol
 - Alpha 1 adrenergic receptor blocking
 - e.g., prazosin
- Indirect
 - Benzodiazepines, alcohol, gabapentin
 - Cortisol

https://www.istss.org/treating-trauma.aspx

National Centre for Mental Health

Traumatic Stress Wales

Early Pharmacological Interventions

- Emerging Evidence
 - Hydrocortisone
- Insufficient Evidence
 - Docosahexaenoic Acid, Escitalopram, Gabapentin, Oxytocin, Propranolol

	Hydrocorti	isone	Place	bo		Risk Ratio	Risk Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	ABCDEFG
Delahanty 2013	0	19	3	24	31.8%	0.18 [0.01, 3.26]	← ■ − − − − − − − − −	2797979
Weis 2006	1	14	3	14	30.6%	0.33 [0.04, 2.83]		
Zohar 2011	0	9	3	8	37.6%	0.13 [0.01, 2.16]	• •	
Total (95% CI)		42		46	100.0%	0.21 [0.05, 0.89]		
Total events	1		9					
Heterogeneity: Chi ² =	0.31, df = 2	P = 0.	86); I ² =	0%				7
Test for overall effect:	: Z = 2.12 (P	= 0.03)				F	avours [experimental] Favours [control]	0

umru

Traumatic Trawmatig Stress Wales

International Societ

for Traumatic Stress Studies

ISTS

Pharmacological Treatment (Adults)

- Low Effect Fluoxetine, Paroxetine, Sertraline, Venlafaxine
- Emerging Evidence *Quetiapine*

	Exp	erimental	Control			:	Std. Mean Difference	Std. Mean Difference	Risk of Bias		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	ABCDEFG	
Brady 2000 (sertraline)	-33	27.0022	93	-23.2	27.5118	90	12.5%	-0.36 [-0.65, -0.07]		<u> </u>	
Brady 2005 (sertraline)	32.56	15.69	49	32.7	28.75	45	9.5%	-0.01 [-0.41, 0.40]		• 7 • 7 • 7 •	
Davidson 2001a (sertraline)	-33	23.76	98	-26.2	23.46	104	12.9%	-0.29 [-0.56, -0.01]		- 7 7 7 7 7 -	
Davidson 2006a (sertraline)	-39.44	28.187	173	-34.17	28.2039	179	15.0%	-0.19 [-0.40, 0.02]		2222220	
Friedman 2007 (sertraline)	-13.1	27.12	84	-15.4	28.42	81	12.1%	0.08 [-0.22, 0.39]		9977779	
Li 2017 (sertraline)	-24.3	7.8	36	-18.1	7.6	36	7.8%	-0.80 [-1.28, -0.32]		666667 6	
Panahi 2011 (sertraline)	-22.7	7.3	35	-17.5	7.5	35	7.8%	-0.69 [-1.18, -0.21]		• ? ? • • ? •	
Pfizer 588 (sertraline)	-27.4	27.12	94	-27.9	28.42	94	12.7%	0.02 [-0.27, 0.30]		2222200	
Tucker 2003 (sertraline versus placebo)	42.09	29.09	23	55.5	29.07	10	4.2%	-0.45 [-1.20, 0.30]		2222929	
Zohar 2002 (sertraline)	-18.7	6.7	23	-13.5	6.6	19	5.5%	-0.77 [-1.40, -0.14]	·	222242	
Total (95% CI) 708							100.0%	-0.28 [-0.45, -0.10]	◆		
Heterogeneity: Tau ² = 0.04; Chi ² = 21.13, df = 9 (P = 0.01); l ² = 57%											
Test for overall effect: $Z = 3.09$ (P = 0.002) Favours [experimental] Favours [control]											

Hoskins MD, et al. (2021) Eur J Psychotraumatol

Pharmacological Augmentation

	Experimental Control							Std. Mean Difference	Std. Mean Difference	Risk of Bias	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI	ABCDEFG	
Ahmadpana 2013 (prazosin)	-3.64	0.78	33	-1.61	1.29	33	12.1%	-1.88 [-2.47, -1.30]		+?+?+????	
Germain 2012 (prazosin)	33.3	16.4	15	35.1	14.3	13	10.9%	-0.11 [-0.86, 0.63]		?? - ? - ? -	
Petrakis 2016 (prazosin)	37.94	37.62	50	37.93	41.13	46	13.3%	0.00 [-0.40, 0.40]	Ⅰ —	?? . ? ?	
Raskind 2003 (prazosin)	57.3	32.3	10	86.5	30	10	9.5%	-0.90 [-1.83, 0.03]	I — — — — — — — — — — — — — — — — — — —	????	
Raskind 2007 (prazosin)	63	20	17	71	22	17	11.4%	-0.37 [-1.05, 0.31]	I —∎∔	9999999	
Raskind 2013 (prazosin)	-25.1	8.3	32	-13.8	7.9	35	12.4%	-1.38 [-1.92, -0.84]	·	9999799	
Simpson 2015 (prazosin)	-0.6	1.1	15	-0.2	1.2	15	11.1%	-0.34 [-1.06, 0.38]	ı —₊+	7744470	
Taylor 2008 (prazosin)	-7	14	13	-1	15	13	10.7%	-0.40 [-1.18, 0.38]	Ⅰ —•+	7 7 7 7 7	
van Liempt 2112 (prazosin)	-13.28	18.79	7	-5.86	14.88	7	8.6%	-0.41 [-1.47, 0.65]	ı —∎ 	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Total (95% Cl) 192 189 100.0% -0.65 [-1.14, -0									▲		
Heterogeneity: Tau ² = 0.42; Chi ² = 38.47, df = 8 (P < 0.00001); l ² = 79%											
Test for overall effect: Z = 2.63 (P = 0.008) Favours [experimental] Favours [control]											

	Expe	rimen	tal	Control			1	Std. Mean Difference	Std. Mean Difference	Risk of Bias
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	ABCDEFG
Bartzokis 2004 (risperidone)	-14.3	16.7	33	-4.6	13.2	32	26.7%	-0.64 [-1.13, -0.14]	←	? ? ? ? ● ? ●
Hamner 2003 (risperidone)	81.3	24.3	19	79	21	18	23.3%	0.10 [-0.55, 0.74]		?????
Krystal 2011 (risperidone)	64.43	2.46	123	67.16	2.46	124	31.6%	-1.11 [-1.37, -0.84]	←	
Monnelly 2003 (risperidone)	-10	0	7	-0.5	0	8		Not estimable		????
Reich 2004 (risperidone)	-29.6	31.5	12	-18.6	12.3	9	18.4%	-0.42 [-1.29, 0.46]	<	???????
Total (95% CI)			194			191	100.0%	-0.57 [-1.13, -0.02]		
Heterogeneity: Tau ² = 0.23; C	hi ² = 13	.46, d	f = 3 (P	= 0.00	4); I ² =	= 78%				+
Test for overall effect: $Z = 2.02$ (P = 0.04)									Favours [experimental] Favours [control]	1
									• • • • • • • • • • • • • • • • • • • •	

ig Stress Wales

PTSD Symptom Reductions

- Selective serotonin reuptakes inhibitors improve PTSD symptoms
 - moderate-certainty evidence
- Mirtazapine and amitriptyline may improve PTSD symptoms
 - low-certainty evidence
- No evidence for antipsychotic drugs
 - low-certainty evidence
- There remain important gaps in the evidence base

Williams T, et al. (2022)

Traumatic Stress Wales

PTSD and Comorbidity after Complex Traumatic Events

Standardised Mean Difference

Coventry PA, et al. (2021) PLOS Medicine

MDMA-Assisted Psychotherapy

- 3,4-methylendioxymethamphetamine
 - Reduces fear of emotional injury
 - Enhances communication
 - Increases empathy

	Experimental			Control			:	Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
Mithoefer 2011 (MDMA)	25.5	26.67	12	59.1	26.59	8	39.5%	-1.21 [-2.20, -0.22]		
Mithoefer 2018 (MDMA 125mg)	-44.3	28.67	12	-11.4	12.6	7		Not estimable		
Mithoefer 2018 (MDMA 75mg)	-58.3	9.78	7	-11.4	12.6	7	25.2%	-3.89 [-5.89, -1.90]		
Oehen 2013 (MDMA)	50.8	19.7	8	66.5	7.6	4	35.3%	-0.85 [-2.12, 0.42]		
Total (95% CI)			27			19	100.0%	-1.76 [-3.21, -0.31]		
Heterogeneity: Tau ² = 1.14; Chi ² = 6.82, df = 2 (P = 0.03); I ² = 71%									-4 -2 0 2 4	
Test for overall effect: Z = 2.38 (I)						F	Favours [experimental] Favours [control]		

NICE (2018) PTSD Guideline Recommendations

- People under 18
 - Do not offer drug treatments for the prevention or treatment of PTSD
- Adults
 - Do not offer drug treatments to prevent PTSD
 - Consider venlafaxine or a SSRI, such as sertraline, if the person has a preference for drug treatment
 - Consider antipsychotics such as risperidone, in addition to psychological therapies, if:
 - disabling symptoms and behaviours, e.g., severe hyperarousal
 - psychotic symptoms
 - and symptoms have not responded to other drug or psychological treatments.

Traumatic Stress Wales PTSD Prescribing Algorithm

https://traumaticstress.nhs.wales/research-and-improvement/tsw-prescribing-algorithm/

Traumatic Stress Wales PTSD Prescribing Algorithm

Hoskins & Bisson (2024)

https://traumaticstress.nhs.wales/research-and-improvement/tsw-prescribing-algorithm/

Diolch Yn Fawr

https://www.cardiff.ac.uk/people/view/122802-bisson-jonathan

https://traumaticstress.nhs.wales/

g Traumatic Stress Wales

